Seeking better algorithms for approximate GCD
نویسندگان
چکیده
منابع مشابه
Generalized companion matrix for approximate GCD
We study a variant of the univariate approximate GCD problem, where the coefficients of one polynomial f(x)are known exactly, whereas the coefficients of the second polynomial g(x)may be perturbed. Our approach relies on the properties of the matrix which describes the operator of multiplication by gin the quotient ring C[x]/(f). In particular, the structure of the null space of the multiplicat...
متن کاملApproximate GCD of Multivariate Polynomials
Given two polynomials F and G in R[x1, . . . , xn], we are going to find the nontrivial approximate GCD C and polynomials F , G ∈ R[x1, . . . , xn] such that ||F − CF ′|| < and ||G − CG′|| < , for some and some well defined norm. Many papers 1,2,3,5,8,10,11,13,15 have already discussed the problem in the case n = 1. Few of them 2,10,11 mentioned the case n > 1. Approximate GCD computation of un...
متن کاملComparing several GCD algorithms
0 binary, I-binary: The binary GCD algorithm ([lS]) and its improvement for multidigit integers (Gosper, see [12]). We compare the executron times of several algoixtliiiis for computing the G‘C‘U of arbitrary precasion iirlegers. These algorithms are the known ones (Euclidean, brnary, plus-mrnus), and the improved variants of these for multidigit compzltation (Lehmer and similar), as well as ne...
متن کاملApproximate Gcd of Inexact Univariate Polynomials
− The problem of finding the greatest common divisor (GCD) of univariate polynomials appears in many engineering fields. Despite its formulation is well-known, it is an ill-posed problem that entails numerous difficulties when the coefficients of the polynomials are not known with total accuracy, as, for example, when they come from measurement data. In this work we propose a novel GCD estimati...
متن کاملGCD-Free Algorithms for Computing Modular Inverses
This paper describes new algorithms for computing a modular inverse e−1 mod f given coprime integers e and f . Contrary to previously reported methods, we neither rely on the extended Euclidean algorithm, nor impose conditions on e or f . The main application of our gcd-free technique is the computation of an RSA private key in both standard and CRT modes based on simple modular arithmetic oper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Communications in Computer Algebra
سال: 2017
ISSN: 1932-2240
DOI: 10.1145/3096730.3096733